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Abstract - In an effort to formulate the high frequency coupling
bet ween antennas |ocated on airfranes conposed of multilayer
inmperfectly conducting materials, a general nodel was sought
whi ch would enbody the electromagnetic properties of the layers
and woul d apply over a broader range of separations of "the
ant ennas. Such a nodel is described here. This work is a
eneralization of the work of pearson concerning the high

requency asynptotic representation of the fields of elemental
sources diffracted by a nmulti layer cylinder. In that work, the
source and field points were located off the cylinder surface and
they were sufficiently separated to permt the effective use of
the residue series Tepresentation of the spectral integrals
i nvol ved. Here the source and field points are |ocated on the
cylinder surface and are permtted to be sufficiently close as to
render the residue series poorly convergent. To obtain a nore
effective represent.ation in this situation, the cylinder is
nodel ed by an anisotropic inpedance cylinder and the resulting
spectral integrals are ‘evaluated by reduction to forms amenable
to nultiple applications of techniques described in the
literature in connection with treatment of axially uniform
sources in this context.

. Introduction

As part of a study of the coupling between antennas on aircraft
such as the configuration shown in Figure 1, an analytical nodel
was constructed which consisted of a multilayer inperfectly
conducting cylinder with an axially directed el enental source of
either electric or magnetic type located on its outernost surface
as in Figure 2. The fields of this source evaluated on the
outermost surface of the «cylinder are indicative of the

attenuation of fields propagating on the surface and can thus
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provi de insight regarding the coupling to be expected between
antennas |ocated on such a cylindrical substrate. At low
frequenci es, of course, an eigenfunction series representation
can be used to eval uate the necessary vector potentials. At high
frequencies, however, such a series becones unwi el dy and a nore
manageabl e representation is sought. This usually takes the form
of a residue series obtained by Watson transformation of the
ei genfunction series. A general treatnment of the problem using
thi s approach was presented by Pearson [1986] [1987]. Pearson’s
treatment, however, required that the sources and field points be
| ocated off the surface and that they be separated sufficiently
that the residue series converged reasonably rapidly. Once

’having obtai ned the residue series for the vector potentials,
Pearson carried out a stationary phase integration on the axial
wavenunber to obtain a solution as a sum of rays which connect
the source and field points and which follow helical paths on the
surface.

A simlar treatnment which was limted to perfectly conducting
cylinders, but permtted on-surface source and field points, was
carried out by Chang, et. al. [1976]. There, however, the
stati onary phase axial wavenumber integration was carried out
first, resulting in an expression for the field conponents
(rather than potentials) in” terns of integrals over azinmutha

wavenumber Which were then treated asynptotically. For |arge
separation of source and field points, again the residue series
representation was used. However, chang et.al. extended their
treatment to small separation by expanding parts of the

integrands in inverse powers of the azinuthal wavenunber and
recogni zing the terns as known Laplace transfornms. This led to a
series representation in powers of the separation or Fock

par aneter. It is noted for future reference that this series
representation is nost. useful for |ow inpedance surfaces such as
the perfectly conducting one treated by chang, et.al. | f the




surface inpedance is not small, the series converges very slowy

unl ess the Fock paraneter is extrenely small; i.e. , the series is
useful only for very small separation between source and field
poi nts. It should be noted further, however, that, while the
power series applies for very small Fock paraneter, it actually
represents, not the true spectral integral for the field
potentials  but , rather, an approximation thereto. The

approxi mati on arises when one substitutes the Fock type Airy
function approximation for the Hankel functions in the integrand.
Since this approxinmation applies near the turning point of the
Hankel functions, the resulting integral is not wvalid for
arbitrarily small Fock parametegg This point wll be discussed
in nmore detail later in this exposition.

More recently, the conplenmentary residue series / power series
approach of chang, et.al. was applied to the two, dimensional
probl em of azinuthal rays on an inpedance cylinder. [Paknys and
Wang, 1987] The exanple cal cul ations presented assune that the
i npedance paraneter, ¢, has magnitude less than 1.0 and it is
stated that when the nmagnitude of g is less than 1.5, the power
series is useful for Fock paraneters |less than O.6. Were the
magni tude of q larger, the range of Fock paraneters over which
the power series is applicable would be considerably reduced.
Thus , for high inpedance surfaces, there appears a gap between
the small Fock paraneter range where the power series is useful
and the |arge Fock paraneter range where the residue series is
useful . This internediate range was treated nmany years ago by
Wait [1956] and Bremmer [1958] in connection with Propagation
over the surface of the earth. They were able to obtain a small
curvature expansi on which covered this intermedi ate range of Fock
par aneter. The first termof this expansion is nentioned by
Paknys and WAng [1987] in their discussion of the planar limt.
In the context of the cylinder problem treated here, the
fornulation of Wait and Brenmer applies only to azinmuthal rays.




In this work their treatnment is extended to cover the case of
non-azimuthal rays (excluding only the case of purely axial
propagat i on)

[1. Formul ati on

Noting that an anisotropic surface inpedance cylinder can exactly
model a multilayer cylinder at a fixed azinmuthal node order
[D.J.Hoppe and Y. Rahmat-Samii, 1.992], we adopt the nodel shown
in Figure 3 and select the surface inpedance to match the
multilayer cylinder at a node order equal to g,a where B, is the
radi al wavenunber in the exterior nedium and a is the outer
radius of the cylinder. Thi s val ue is chosen because, in the
high frequency asynptotic |imt treated here, nost of the
contribution to the spectral integrals comes from the region of
the conpl ex order plane near g,a. In terms of the formulation
presented by Prearson [1986], the axial magnetic and electric
vector potentials for the fields on the cylinder surface due to
el emental axial electric and magnetic current sources on the
surface may be expressed as the spectral integral
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where ¢ ' "¢’ + 2nm, B = kgl- «®, and primed and unprimed

coordi nates denote the source and field points, respectively.
The boundary condition on the surface of the cylinder may be
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and medium 1 is the medium exterior to the inpedance cylinder.
Note that this is a spectral integration over both the axial wave
nunber, «, and the azinmuthal node nunber, v. The summation on
index n is the sum over multiple ray circumavigations of the

cylinder. This integral may be expanded and sinplified into the
forms ,
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Since the surface rays decay in anplitude exponentially for
sufficiently large separation of source and field points, the n=0
termof the series will. dom nate. Selecting only the n=0 term




and performng the integration on a by the nethod of

phase, results in,
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The remai nder of this paper deals with the asynptotic eval uation
of the integrals, wv,, for large g,a over various ranges of the
Fock paraneter, ¢.

I1l. Asynptotic Evaluation of the Integrals.
A, Review of the Azinmuthal Case.

If the source and field points are at the sanme axial coordinate,
that is z=z’', then =0 and it follows that «, 2,, and zg4 are

also zero and g,=k, . In such a circunstance v,,=0, v,=0, and,
® JnA_ -1
2 1 5 . _
Vi1 (§) = —— = eJT/4 J—E J. [ijm"-—«i] e JET g (12a)
jm 2 1 n.2
—o0 17 2¢
2 1 4 £ g jmn1 -1 :
Vo (€) = —— — ej"/4 P I I:ij21 + - ] e_'jgt dt (12b)
njm 2 n yA
-0 z¢
representing the TM and TE cases, respectively. Except for the

factor 2,—, these are exactly the forns treated by Paknys and
Tjm

Wang [1987] and by Wait [1956] and Bremmer [1958]. To see this,

we note that near wv=k,a,
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where w,(t) = In [Bi(t) - | Ai(r)) and Al and Bi are Airy

functions. Recal ling our earlier discussion, note that, because

it applies only when ts[2v/(k,a))"”® and thus is not valid for

arbitrarily large =, it is this Airy function approxi mation of
L,, Which invalidates the applicability of the resulting
representation for arbitrarily small &. [Bowran, et.al., 1987,
P 57] Now, follow ng Paknys and Wang [1987], we define

q = -jmC (14)
wher e,
-Ay
C=-——inthe TM case and, (15a)
MZz¢
ny
C=—-in the TE case. (15b)
Zz¢
Thus , we find that,
2 1 a4 T o wy(T) e 38T 2
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where ii=11 in the TMcase and 22 in the TE case and v(&,q) IS
the integral treated by Paknys and Wang [1987], Wait [1956], and
Bremrer [1958].

For large values of ¢, v(€,q) is conveniently represented as a
series of residues at the poles corresponding to zeros of the
denom nator of the integrand; that. is, at T = 1, where,




W, (T,) = g W (T,) (17)

For small values of €&, this residue series is poorly convergent
and an alternative treatnent. is needed. One approach is to
expand the ratio % defined below in inverse powers of T as
fol | ows.

W : 5 15
PSRN e U AU (18)

AT 457527 gatt

Substituting this in the integrand and expanding all but the
exponential in inverse powers of t, followed by application of
Watson's lemm, results in an asynptotic representation of v(£,q)
for small €. As nentioned earlier, while useful for small values
of g, the range of utility of this representation becomes smaller
as ( increases. Therefore, for large g still another treatnent
IS needed.

The required treatnent was provi ded by Wait [1956] and by Brenmer

[ 1958] wherein they use the above |arge T expansion of % to show
t hat

1, -1 { 1 1 53 4
RaAd a9 14505 250143092

1 5 ] C ,
- = | 5% + 0(5? (19)
[ as?(1+3ds)®  8s¥2(1+9ds)?

where s = -t/ ¢ so that {s = 35{t/q and & = (-2)"3q'. The
terms of this expansion may now be recogni zed as known Laplace
transforms expressible in terns of the conplenentary error
function. That is,
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vig, @ - F(P) + = [1- 3(p)™® - (112 P) F(P)]

4 q
1 5p2
f o (- S (1-p) - 2p = ez - 1) R(P) ]
q
+ 0(q™®) (20)
wher e,
F(p) = 1- jmp)"® e-p erfc(jp'’?), (21)
and p = j£9° as given by H || and wait [1980] . This has been

termed the “small curvature approximtion” by virtue of the

powers of &° which, being inversely proportional to ga, is a
measure of the curvature of the surface. It is noted here that
one nust exercise care in the use of this fornula because,
strictly  speaking, it represents the integral only if

Re(jp'’?)z0. Otherwise, one nust change the al gebraic sign of
ptsz in this formila. This circunstance never arose in the work
of Hi Il and Wait because of physical realizability constraints on
the surface inpedance. It will, however, arise in subsequent
anal ysis presented here. Finally, note that this expansion is
not very useful for small g owing to the increasing inverse
powers of ¢ appearing in the terms. Therefore, for small g the
power series approach discussed above remains the representation
of choice.

B. Treatnent of the Non-azinuthal Case.

Returning to equations (10a)-(10d) , we now allow the angle, 6, to
take on any value except 90 degrees corresponding to axial
propagation because at 90 degrees the stationary phase
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integration which led to these expressions becones invalid.
Excluding that case, we note that the denomi nator of the
i ntegrands of equations (10) are of the form

A~ (R +C)(X + c) (Tt +C3)(t + Cy) (22)

where the Cs are independent of . Now, reversing the expansion
(18) to obtain,

.- !p+L+.2- -d-
pl_RZ d-.o0. (23)

g®*  32%7

retaining, say, two terns, and substituting this expansion into

the integrands of equations (10), one finds that %A is a sixth
degree polynom al which can be factored into the form

RN ~ c, (X - o) (8 - qp) (X - d3) (X = Q) (X ~ o) (X - g) (24)

Had nore terns of (23) been retained, the degree of (24) would

have been correspondi ngly higher. For exanple, retaining three
ternms leads to a twelfth degree polynomal. Specializing to v,;
I.e., (10a) , for the nonent, the corresponding numerator

expression is,
% (D,% + D,) e I&T (25)

where here the D's are independent of . |In the case of V, the
nunerator is,

K%(D, + D,T) e 35T = & [%D, + D, ( &> + % )] e IET (26)
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Thus , it becones clear that, by partial fraction expansion, the
i ntegrands of (10) may be expressed in the form

Z [ T e IET gz (27)

n=1 -0

The six integrals in (27) are now of the form (16) and can
therefore be treated asynptotically in the same manner. Thus
treatnent of the case of general e has been reduced to repeated
application of the methods used in the azinuthal case, e=0. Note
that in carrying out this prescription,” if only two terns are
retained in (23) , one is justified in retaining only, two terns in
(20) resulting in what will be termed a “two term small curvature
approxi mation.” If, however, three terns are retained in (23),
one is then justified in including three terns in (20) leading to
a “three term small curvature approximation.”

It is noted in passing that one need not necessarily approximate
the nunmerator (26) with the series (23) . An alternative
procedure would be to | eave the nunerator in the form

£%(D; + D,T) e IET (28)

and produce a partial fraction expansion |eading to,

6 0

A, + Bt

- e IET go (29)
(X - q)

ij

n=1 -~
Then, the a, ternms can be approximated as in the azinuthal case
while the B, terns can be approximated by differentiating the

results for the a, terns with respect to -jg. This, in fact, is
the method used in the exanples to follow
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IV. Illustrative Numerical Exanples.

To illustrate the ranges of applicability of the various
representations  described  above, two exanple cylindrica

geonmetries were chosen. Each is a circular cylinder with a one
tenth free space wavelength thick dielectric coating. The
dielectric has a conplex relative permttivity of 6.65-]3.00 and
the perneability of free space. The el ectrical outer radius,

k,a, of the coated cylinder is 12 in one case and 500 in the
other where k, is the wavenunber of the exterior nedium i.e.,

free space. These two radii denpnstrate the representations both
in the large radius regine where they are nost accurate and for a
small radius where their accuracy deteriorates sonewhat due
primarily to the inaccuracy of the Fock type Airy function
approxi mati on of the Hankel functions. These cylinders were then
approxi mated by inpedance cylinders of the same outer radii where
the anisotropic surface jnpedances “were deternined by matching
the nmodal reflection coefficients at node order v = Bja. ( Thi
of course, neans that the inpedances are dependent on the angle
of ray propagation on the surface.)

We begin by reproducing the results for the azinuthal case to

validate the conputations.  Consider the nmagnitude and phase of
the Fock integrals, vy, for the larger cylinder in the azinutha
case. Figure 4, shows both the four term residue series result

and that of the three termsmall curvature approxi mation of Wit
and Bremmer for the TM polarization. The poles and residues were
conputed from the unapproximated integrands for the inpedance
cylinder while the small curvature approximation, of course,
I nvol ved the approxi mati on of the Hankel function by the Fock
type Airy functions. This will be the case unless otherw se
not ed. (Note that the |abel “90 degree path” refers to the
conpl ement of the angle e. This convention is used throughout
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the set of exanples presented here. ) A smooth transition from
one approxi mation to the other may be observed in the vicinity of
£=0.6. Simlar behavior is shown in Figure 5 for the TE
pol ari zat i on. Figure 6 conpares the snall curvature
approximtion of Figure 5 with the power series expansion for
smal | €. Both are based on the integrand with Hankel functions
approximated with Fock type Airy functions. Note that, because
of the large magnitude of q (i.e., nearly 6) , the power series
fails for € greater than about 0.03 whereas for g on the order of
unity, Paknys and Wang showed good results up to £=0.6. Thus, in
t he subsequent exanples, the power series is used for g s of
magni tude less than or equal. to unity and the small curvature
approximation is used for q's of magnitude greater than unity.

Moving now to a 45 degree ray path, Figures 7a, 7b, and 7c
illustrate the results for the three Fock integrals, vy, Vi
and V,,. (Recal | that v, = vi2.) Here eight residue terns are
used to obtain the sane order of approximtion as with four termns
in the azinmuthal case because here both polarizations are

i nvol ved. Corresponding results wusing the two term small
curvature approximt.ion are shown in Figures 8a, 8b, and sc. The
deterioration of the approximation is quite evident. In fact, it

woul d be difficult to determine fromthe two term approxinmation
t he proper value of the Fock paraneter at which to nmake the
transiti on between the two approximations. The three term
approxi mation in vFrigure 7 nmkes it clear that the proper
transition is in the vicinity of £=0.65.

To explore the low frequency limtations of the high frequency
asynptotic approximtions, the above conputations were repeated
for the small cylinder; i.e., for ka=12. The results for the
two term small curvature approximation are shown in Figures 9a,
9b, and g9c while the three termresults are shown in Figures 10a,
10b, and 10c. While the three term approximtion provides sone
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i nprovenent, in neither set of curves is there a clearly defined
snooth transition between the small and | arge Fock paraneter
representations, particularly in the case of the magnitude. The
addition of nore terms extends the residue series validity to
| ower val ues of Fock paranmeter as shown in Figures ha, 11b, and
llc. Nevertheless, the transition to the small curvature
approximation is still not very clearly defined. Recall now that
that the residue series are derived fromthe exact integrands.
|f, instead, one uses the poles and residues of the integrands in
whi ch the Hankel functions have been approxi mated by Fock type
Ary functionséx that is, the integrands used in the small
curvature approxi mation, one finds a nuch better defined
transition as shown in Figures 12a, 12b, and 12c. Fromthis one
may conclude that the deterioration observed as the electrical
size of the «cylinder decreases is not primarily due to
deterioration in either the residue series or the small curvature
appr oxi mat i on. Rather, it is primarily due to deterioration of
the approximation of the Hankel functions by Fock type Airy
functions as in (13). One nmght try to inprove the |ow frequency
validity of this treatment by adding more terns to this

asynptoti c approxi mati on. Such ternms may be obtained fromthe
expansi on given by Bowran, Senior, and Uslenghi [1987]. VWi | e

this is is’”deemed beyond the scope of the present treatment, the
next order terms of the necessary approxi mation (proportional to
m-2) are given bel ow for reference.

12" (ka)

imly,, = -Mm—— = K + __-1_- (4T+T3)R + _l,_ (6+4T-T3)

Hl(,z)(kla) 60m ° - 6 0 ni
Here again © is to be replaced by (23). Wile it is not
rigorously guaranteed that addition of these terns will inprove

the accuracy of the approximation, this expression may be used to
estimate the inpact of truncation at one term in a given
situation. For example, for the case of purely azinuthal rays on
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the cylinder of ka=500 in Figures 4,5, and 6, the first and
second terns of this expansion are roughly equal in nmagnitude for
€=0.075 indicating that, for Fock paraneter values below this,
the first term of the approximation is probably inadequate.
Finally, it is noted that, regardless of how many ternms of this
approximation are retained, the resulting integrands will not be
valid for arbitrarily large =. Therefore, the asynptotic
approximation of the integrals will not extend to arbitrarily
small &. To extend the approximation to arbitrarily small &, one
shoul d expand the exact integrands in inverse powers of < in
analogy with the treatment of Paknys and Wang. (Recall that they
expanded the approximate integrand.) This, too, is deenmed beyond
the scope of the present treatnent.

Studies simlar to the above have been carried out for ray paths
at angles of 30 degrees and 60 degrees with results very simlar
in character to those presented here. Wiile it is recognized
that these approxi mati ons will not. be valid for purely axial ray
paths and will deteriorate in accuracy near axial propagation,
these studies indicate that the approximation techniques
presented are valid and useful for all ether angles.

v. Concluding Summary.

In this work the small curvature expansion of Wait and Bremer
has been generalized to the case of non-azinuthal rays. Thi s
provides a high frequency asynptotic approximation of the
coupling between antennas |ocated on an inpedance cylinder when
their separation is too small for effective use of the usua

residue series. The result is applicable to the probl em of
estimating the coupling between antennas mounted on non-perfectly
conducting aircraft skins. Exanpl e cal cul ations are presented
for both the azinuthal ray case (for validation purposes) and the
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general case (excluding axial propagation). These exanpl es
denonstrate that the approximation conplenents the residue series

and power series approximations in the intermediate range of Fock
par amet er.
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Fi gure Captions

Figure 1. Ray paths for coupling between antennas on an
airframe.

Figure 2. Multilayer cylinder nodel of aircraft skin.
Figure 3. Inpedance cylinder nodel.

Figure 4. Asynptotic representations for azimuthal rays in
TM case.

Figure 5. Asynptotic representations for azimuthal rays in
TE case

Figure 6. Conparison of small curvature and power series
representations for azinuthal rays in the TE case.

Figure 7a. Asynptotic representations for helical ray path i

TM TM coupling; three term small curvature approxi mation

Figure 7b. Asynptotic representations for helical ray path i

TM TE coupling three term small curvature approximation.

Figure 7c. Asynptotic representations for helical ray path i

TE-TE coupling three term small curvature approximation.

Figure 8a. Asynptotic representations for helical ray path i

TM TM coupling; two term small curvature approximation.

Figure 8b. Asynptotic representations for helical ray path i

T™-TE coupling two termsmall curvature approxi mation.
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Figure 8c. Asynptotic representations for helical ray path in
TE-TE coupling two term small curvature approxi mation.

Figure 9a. Asynptotic representations for helical ray path in
TM TM coupling on a small cylinder using a two term snal
curvature approximation,

Figure 9b. Asynptotic representations for helical ray path in
TM TE coupling on a small cylinder using a two term smal |
curvature approximation.

Figure 9c. Asynptotic representations for helical ray path in
TE-TE coupling on a snmall cylinder using a two term snall
curvature approximation.

Figure | Ca. Asynptotic representations for helical ray path in
TM TM coupling on a small cylinder using a three. term smal
curvature approxi mation.

Figure 1ob. Asynptotic representations for helical ray path in
TM-TE coupling on a small cylinder using a three termsmall
curvature approxi mation.

Figure 10c. Asynptotic representations for helical. ray path in
TE-TE coupling on a small cylinder using a three term small
curvature approxi mation.

Figure ha. Asynptotic representations for helical ray path in

TM TM coupling on a snall cylinder using a sixteen term residue
series.

Figure 11b. Asynptotic representations for helical ray path in

TM TE coupling on a snall cylinder using a sixteen term residue
series.
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Figure 11c. Asynptotic representations for helical ray
TE-TE coupling on a smallcylinderusingasixteen term

series.

Figure 12a. Asynptotic representations for helical ray
TM TM coupling on a small cylinder using a ten residues
Fock approxi mati on.

Figure 12b. Asynptotic representations for helical ray

TM-TE coupling on a small cylinder using a ten residues
Fock approxi mation.

Figure 12c. Asynptotic representations for helical ray

TE-TE coupling on a small cylinder using a ten residues
Fock approxi mati on.
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